Performance Evaluation of Permeable Pavement Systems

Jaehun Ahn1, Hyangseon Jung1, Hyungwon Kim1, Hyunsuk Shin1, Shinin Han2

1Civil and Environmental Eng., Pusan National University
2Seoyeong Engineering Co., Ltd.
Performance Evaluation of Permeable Pavement Systems

Jaehun Ahn¹, Hyangseon Jung¹, Hyungwon Kim¹, Hyunsuk Shin¹, Shinin Han²
¹Civil and Environmental Eng., Pusan National University
²Seoyeong Engineering Co., Ltd.
Contents

- Introduction

- Element, Model and Prototype Scale Tests
 - Element Scale Example
 - Permeability and Clogging
 - Model Scale Example
 - Rainfall Infiltration / SWCC Back-Calculation

- Summary
Introduction
Introduction

Nakdong River LID

[Images of Nakdong River LID projects]

[Link: (http://glenc.co.kr/intro/idx44.htm)]
Nakdong River LID

http://glenc.co.kr/intro/idx44.htm
Introduction
Cement Concrete Mixture Design

<table>
<thead>
<tr>
<th>Variable</th>
<th>Korea (Ministry of Land, Infrastructure and Transport)</th>
<th>Japan (Japan Road Institute)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-Pervious Concrete</td>
<td></td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>≥ 4.5 MPa</td>
<td>≥ 4.5 MPa</td>
</tr>
<tr>
<td>Permeability</td>
<td>≥ 0.01 cm/s</td>
<td>≥ 0.1 cm/s</td>
</tr>
<tr>
<td>Porosity</td>
<td>15-20%</td>
<td>20-25%</td>
</tr>
</tbody>
</table>

Permeable Block Design

<table>
<thead>
<tr>
<th>Variable</th>
<th>Korea (Seoul Metropolitan City)</th>
<th>Japan (Interlocking Block Pavement Technology Institute)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Porous Block</td>
<td>Interlocking Block</td>
</tr>
<tr>
<td></td>
<td>Vehicle Road</td>
<td>Pedestrian Road</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>≥ 5 Mpa</td>
<td>≥ 4 MPa</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>≥ 20 MPa</td>
<td>≥ 16 MPa</td>
</tr>
<tr>
<td>Permeability</td>
<td>≥ 0.01 cm/s</td>
<td>≥ 0.01 cm/s</td>
</tr>
</tbody>
</table>
Asphalt Concrete Mixture Design

<table>
<thead>
<tr>
<th>Variable</th>
<th>Permeable Friction Course</th>
<th>Permeable Pavement (Infiltration to Base)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Korea</td>
<td>United States</td>
</tr>
<tr>
<td></td>
<td>Ministry of Land, Infrastructure and Transport</td>
<td>Seoul Metropolitan City</td>
</tr>
<tr>
<td>Porosity</td>
<td>20±0.3%</td>
<td>20±1%</td>
</tr>
<tr>
<td>Permeability</td>
<td>≥ 0.01 cm/s</td>
<td>≥ 0.01 cm/s</td>
</tr>
<tr>
<td>Cantabro Loss</td>
<td>≤ 20% (20°C)</td>
<td>≤ 30% (-20°C)</td>
</tr>
<tr>
<td>Drain-Down</td>
<td>≤ 30%</td>
<td></td>
</tr>
<tr>
<td>Tensile Strength Retained (TSR)</td>
<td>≥ 85%</td>
<td>≥ 70%</td>
</tr>
<tr>
<td>Wheel Tracking Test</td>
<td>≥ 3000 cycles/mm</td>
<td>≥ 3000 cycles/mm</td>
</tr>
<tr>
<td>Overlay Tester</td>
<td></td>
<td>≥ 200 cycles</td>
</tr>
<tr>
<td>Marshall Stability</td>
<td>≥ 5.0 kN</td>
<td></td>
</tr>
<tr>
<td>Flow Value</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Model Scale Test

Hydrological Cycle Implementation

- Distributed Rainfall Simulator
- Precipitation
- Evaporation
- Infiltration
- Overland Flow
- Groundwater Runoff
- Surface Runoff
- Subsurface Runoff
- Runoff Container
- Runoff Plot

Flow meters 1 and 2
Prototype Test

Pressure head observation

Water quality sampling

Underdrain effluent flux collection
Prototype Test
Element, Model and Prototype Scale Tests

<table>
<thead>
<tr>
<th>Test Scale</th>
<th>Material</th>
<th>Structural</th>
<th>Hydrologic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>Pavement</td>
<td>Cantabro Test
Tensile Strength Reduced
Drain-Down (Asphalt)
Wheel Tracking (Asphalt)
Marshall Stability (Asphalt)
Dynamic Modulus (Asphalt)
Flexural Strength (Concrete, Block)
Compressive Strength (Concrete, Block)</td>
<td>Porosity Permeability Clogging
Soil-Water Characteristic Curve</td>
</tr>
<tr>
<td>Aggregate & Soil</td>
<td>Particle Size Distribution
Maximum Unit Weight
California Bearing Ratio
Compression Test
Resilient Modulus
Cantabro Test (Aggregate)</td>
<td>Porosity Permeability
Soil-Water Characteristic Curve</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Scale</th>
<th>Environmental & Thermal</th>
<th>Hydrologic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Contamination (Controlled)</td>
<td>Infiltration – Rainfall
Infiltration – Ponding
Clogging
Evapotranspiration</td>
</tr>
<tr>
<td>Prototype</td>
<td>Contamination (Uncontrolled)
Surface Temperature</td>
<td>Infiltration – Rainfall
Infiltration – Ponding
Evapotranspiration</td>
</tr>
</tbody>
</table>

Bold – may be used for design criteria
Italic – may not be equipped in Korean LID Research Center
Element Scale Test – Permeability and Clogging

Test Procedure - Clogging

1. Sample setup
2. Sample saturation
3. Heads adjustment
4. Water flow for 10 mins
5. Hold water flow
6. Apply 40 g clogging particle
7. Brush clogging particle into pore
8. End

Repeat until no more clogging applicable
Element Scale Test – Permeability and Clogging

Mixing Tank

- Tank Capacity: 200 L
- Mixer Speed: 5.5 rps Max

Pump

- Capacity: 150 L/h Max
- Water can circulate into the tank using a bypass value
Element Scale Test – Permeability and Clogging

Stand Column
- Cross-Section: 300x300 mm
- Three sections assembled

Column Section
- Outlet valves at 150, 300, 600 mm for constant heads
- Overflow can circulate to mixing tank

Pavement Section
- Height: 100, 150, 200 mm
- 꼴, ⌒ shape assembled

Aggregate Section
- Height can adjust up to 400mm
Element Scale Test – Permeability and Clogging

Flow Meter

Tipping bucket

100, 200, 300 ml buckets
Counter connected to data acquisition
Calibration required
Element Scale Test – Permeability and Clogging

Test Material

Pervious Concrete

- **Mixing (KS F2425)** - Mixer used with following proportion
- **Compaction (KS F2043)**

Mixture proportions of the pervious concrete mixtures

<table>
<thead>
<tr>
<th>Pervious concrete No.</th>
<th>Cement (kg/m³)</th>
<th>3/8” aggregates 12.5~9.5 mm (kg/m³)</th>
<th>#8 aggregates 4.75~2.36mm (kg/m³)</th>
<th>Water (kg/m³)</th>
<th>Porosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>312</td>
<td>1558</td>
<td>-</td>
<td>103</td>
<td>0.20</td>
</tr>
<tr>
<td>Type B</td>
<td>312</td>
<td>-</td>
<td>1559</td>
<td>103</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Element Scale Test – Permeability and Clogging

Test Material

Base

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>40</th>
<th>20</th>
<th>5</th>
<th>2</th>
<th>0.4</th>
<th>0.08</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing</td>
<td>100</td>
<td>79</td>
<td>49</td>
<td>31</td>
<td>14</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Water Content (%)

<table>
<thead>
<tr>
<th>Water Content (%)</th>
<th>Dry Density (g/cm³)</th>
<th>Relative Density (%)</th>
<th>Volume (cm³)</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>1.969</td>
<td>90</td>
<td>36000</td>
<td>72.36</td>
</tr>
</tbody>
</table>

Clogging Particle

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>Sieve No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>#6 Silica Sand</td>
<td>0.25~0.6</td>
</tr>
<tr>
<td>#8 Silica Sand</td>
<td>0.075~0.1</td>
</tr>
</tbody>
</table>
Element Scale Test – Permeability and Clogging

Permeability – No Clogging

- Pervious Concrete (Type A)
- Base
- Pervious Concrete (Type A) + Base

Permeability – Clogging

- Pervious Concrete (Type A) with Clogging Sand #6
- Pervious Concrete (Type A) with Clogging Sand #8
- Pervious Concrete (Type B) with Clogging Sand #6
- Pervious Concrete (Type B) with Clogging Sand #8
Pervious Concrete (Type A)

\[v = k_i^n \]
\[v = 0.246i^{0.728} \]

\[n = 0.72 \]
\[k = 0.246 \text{ (cm/s)} \]

Base

\[v = k_i^n \]
\[v = 0.066i^{0.80} \]

\[n = 0.80 \]
\[k = 0.066 \text{ (cm/s)} \]
Element Scale Test – Permeability and Clogging

Permeability – No Clogging

Pervious Concrete + Base

\[v = k i^n \]
\[v = 0.072 i^{0.74} \]
\[n = 0.74 \]
\[k = 0.072 \text{ (cm/s)} \]

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pervious Concrete</td>
<td>0.72</td>
<td>0.246</td>
</tr>
<tr>
<td>Base</td>
<td>0.80</td>
<td>0.066</td>
</tr>
<tr>
<td>Pervious Concrete + Base</td>
<td>0.74</td>
<td>0.072</td>
</tr>
</tbody>
</table>
Element Scale Test – Permeability and Clogging

Permeability – Clogging

Type A Clogged with #6 Sand

<table>
<thead>
<tr>
<th>Clogged Sediment</th>
<th>k (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No clogging</td>
<td>0.1932</td>
</tr>
<tr>
<td>40 g</td>
<td>0.1611</td>
</tr>
<tr>
<td>80 g</td>
<td>0.1361</td>
</tr>
<tr>
<td>120 g</td>
<td>0.1181</td>
</tr>
<tr>
<td>160 g</td>
<td>0.0899</td>
</tr>
<tr>
<td>200 g</td>
<td>0.0767</td>
</tr>
</tbody>
</table>

Type A Clogged with #8 Sand

<table>
<thead>
<tr>
<th>Clogged Sediment</th>
<th>k (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No clogging</td>
<td>0.2237</td>
</tr>
<tr>
<td>40 g</td>
<td>0.2049</td>
</tr>
<tr>
<td>80 g</td>
<td>0.1791</td>
</tr>
<tr>
<td>120 g</td>
<td>0.1666</td>
</tr>
<tr>
<td>160 g</td>
<td>0.1634</td>
</tr>
<tr>
<td>200 g</td>
<td>0.1400</td>
</tr>
<tr>
<td>240 g</td>
<td>0.1282</td>
</tr>
</tbody>
</table>
Element Scale Test – Permeability and Clogging

Permeability – Clogging

Type B Clogged with #6 Sand

<table>
<thead>
<tr>
<th>Clogged Sediment</th>
<th>k (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No clogging</td>
<td>0.0320</td>
</tr>
<tr>
<td>40 g</td>
<td>0.0226</td>
</tr>
<tr>
<td>80 g</td>
<td>0.0148</td>
</tr>
<tr>
<td>120 g</td>
<td>0.0109</td>
</tr>
</tbody>
</table>

Type B Clogged with #8 Sand

<table>
<thead>
<tr>
<th>Clogged Sediment</th>
<th>K (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No clogging</td>
<td>0.0539</td>
</tr>
<tr>
<td>40 g</td>
<td>0.0434</td>
</tr>
<tr>
<td>80 g</td>
<td>0.0340</td>
</tr>
<tr>
<td>120 g</td>
<td>0.0340</td>
</tr>
<tr>
<td>160 g</td>
<td>0.0281</td>
</tr>
</tbody>
</table>
More sediments are clogged in the concrete with larger pore.

When the same amount of sediments are applied, #6 sand tends to reduce permeability more.
Model Scale Test – Rainfall Infiltration

- Pavement Permeameter
 - Upper Section
 - Lower Section
- Counter
- Data Logger
- Lysimeter
- Tipping Bucket
Model Scale Test – Rainfall Infiltration

Upper Section

- For pavement section of height 10, 15 and 20 cm
- Dimensions: 30x30x15 cm, x20 cm, x25 cm
- Values 5 cm below the top for runoff
- ▲, ▼ shape to assemble pavement

Lower Section

- For base layer
- Drainage at the bottom
Model Scale Test – Rainfall Infiltration

Bottom Support

- Accommodate base section up to 40 cm
- Geotextile layered

Lysimeter

- Record evapotranspiration
- Load Cell Capacity: 300 kg
- Load Cell Resolution: 0.01 kg
- Waterproof roof
Model Scale Test – Railfall Infiltration

Tipping Bucket
- Measure flow rate
- 100, 200, 500 ml buckets

Counter

Data Logger
Model Scale Test – Infiltration

Material

Pervious Concrete
- Dimensions: 30x30x10 cm
- Compaction following KS F 2043
- Weight: 17.64kg
- Unit Weight: 19.21 kN/m³

40 mm Aggregate Well-Graded

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>50</th>
<th>40</th>
<th>20</th>
<th>5</th>
<th>2</th>
<th>0.4</th>
<th>0.08</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing</td>
<td>100</td>
<td>100</td>
<td>79</td>
<td>49</td>
<td>31</td>
<td>14</td>
<td>5.5</td>
</tr>
</tbody>
</table>

- Dimensions: 30x30x40 cm
- 90% Relative Compaction
- Compacted in two layers (20 cm each)
- Weight: 72kg

40 mm Aggregate Uniform

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>50</th>
<th>40</th>
<th>20</th>
<th>10</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing</td>
<td>100</td>
<td>100</td>
<td>51</td>
<td>15</td>
<td>2</td>
</tr>
</tbody>
</table>

- Dimensions: 30x30x40 cm
- Compacted in four layers (10 cm each)
- Weight: 72kg
Model Scale Test – Rainfall Infiltration

Test Procedure

• Compact base layer
• Assemble and setup pavement layer
• Adjust and calibrate rainfall intensity
• Setup permeameter and rainfall simulator
• Spray water and measure runoff and drainage
Model Scale Test – Rainfall Infiltration

Test Results – Infiltration to Pervious Concrete + Base

- Rainfall Intensity: 148 mm/hr
- Duration: 3600 s

Graphs showing cumulative flux over time for Well-Graded Base and Uniform Base.
Van Genuchten-Mualem Model (Van Genuchten, 1980; Mualem, 1976)

Soil-Water Characteristics Curve

\[
\theta(h) = \begin{cases}
\theta_r + \frac{\theta_s - \theta_r}{[1 + \alpha h l^m]^m} & h < 0 \\
\theta_s & h \geq 0
\end{cases}
\]

- \(\theta_r\) = residual water content
- \(\theta_s\) = saturated water content (or porosity)
- \(\alpha\) = suction head at air entry (\(\alpha > 0\))
- \(n\) = coefficient regarding pore size distribution (\(n > 1\))
- \(m = 1 - 1/n\)
- \(h\) = suction head

Relative Permeability Function

\[
K(h) = K_s S_e^l [1 - (1 - S_e^{l/m})^m]^2
\]

- \(K_s\) = saturated permeability
- \(S_e\) = effective degree of saturation
 \[= \frac{\theta(h) - \theta_r}{\theta_s - \theta_r}\]
- \(l\) = coefficient regarding connectivity of pore
 \[= 0.5\] for geotechnical material
Model Scale Test – SWCC Back-Calculation

Pervious Concrete

- Dimensions: 30x30x20 cm
- Weight: 34.5 kg
- Mixed for construction (The GL, 2015)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_s</td>
<td>0.0755 cm/s</td>
<td>Lab Test</td>
</tr>
<tr>
<td>θ_s</td>
<td>0.216</td>
<td>Lab Test</td>
</tr>
<tr>
<td>θ_r</td>
<td>0.0001</td>
<td>Kim et al. (2015)</td>
</tr>
<tr>
<td>l</td>
<td>0.5</td>
<td>Mualem (1976)</td>
</tr>
<tr>
<td>α</td>
<td>Unknown</td>
<td>Inverse Analysis</td>
</tr>
<tr>
<td>n</td>
<td>Unknown</td>
<td>Inverse Analysis</td>
</tr>
</tbody>
</table>
Model Scale Test – SWCC Back-Calculation

Constant Head Test

\[
k = \frac{L}{h} \times \frac{Q}{A(t_2 - t_1)}
\]

- \(h\) = head difference (\(= 20\) cm)
- \(Q\) = volume of flow
- \(t\) = duration (\(= 600\) s)

\(k\) = permeability
\(= 0.0755\) cm/s

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_s)</td>
<td>0.0755 cm/s</td>
<td>Lab Test</td>
</tr>
<tr>
<td>(\theta_s)</td>
<td>0.216</td>
<td>Lab Test</td>
</tr>
<tr>
<td>(\theta_r)</td>
<td>0.0001</td>
<td>Kim et al. (2015)</td>
</tr>
<tr>
<td>(l)</td>
<td>0.5</td>
<td>Mualem (1976)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Unknown</td>
<td>Inverse Analysis</td>
</tr>
<tr>
<td>(n)</td>
<td>Unknown</td>
<td>Inverse Analysis</td>
</tr>
</tbody>
</table>

Porosity

\[P(\%) = 1 - \frac{W_D - W_S}{\gamma_w V_T} (\times 100\%)
\]

- \(W_D\) = dry weight
- \(W_S\) = submerged weight
- \(V_T\) = total volume
- \(\gamma_w\) = unit weight of water

\(P = 21.6\%\)
Model Scale Test – SWCC Back-Calculation

Parameter	**Value**	**Source**

\(K_s \) | 0.0755 cm/s | Lab Test
\(\theta_s \) | 0.216 | Lab Test
\(\theta_r \) | 0.0001 | Kim et al. (2015)
\(l \) | 0.5 | Mualem (1976)
\(\alpha \) | Unknown | Inverse Analysis
\(n \) | Unknown | Inverse Analysis

Diagram Description
- **Unknown System**
 - Finite Element Model – HYDRUS 2D (PC-Progress, 2011)

- **Model**
 - **UNKNOWN SYSTEM**
 - **MODEL**
 - Drainage Measured
 - Drainage Calculated
- **Error minimized?**
 - **No**
 - **PARAMETER ADJUSTMENT ALGORITHM**
 - \(\alpha^{(n+1)} \) and \(n^{(n+1)} \)
 - **Yes**
 - **PARAMETER DETERMINATION**
 - \(\alpha^{(n)} \) and \(n^{(n)} \)
Model Scale Test – SWCC Back-Calculation

Test Case
- Rainfall Intensity: 136 mm/hr
- Duration: 1400 s (23 min)

Measured and Calculated Drainage for Inverse Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_s</td>
<td>0.0755 cm/s</td>
<td>Lab Test</td>
</tr>
<tr>
<td>θ_s</td>
<td>0.216</td>
<td>Lab Test</td>
</tr>
<tr>
<td>θ_r</td>
<td>0.0001</td>
<td>Kim et al. (2015)</td>
</tr>
<tr>
<td>l</td>
<td>0.5</td>
<td>Mualem (1976)</td>
</tr>
<tr>
<td>α</td>
<td>3.69</td>
<td>Inverse Analysis</td>
</tr>
<tr>
<td>n</td>
<td>4.42</td>
<td>Inverse Analysis</td>
</tr>
</tbody>
</table>

$\alpha = 3.69$ and $n = 4.42$ estimated
Model Scale Test – SWCC Back-Calculation

Soil-Water Characteristics Curve of Pervious Concrete

Soil-Water Characteristics Curve of Soils (Schanz, 2007)
Summary

- A test program and facility with scales of element, model and prototype experiments is under development.

- Equipment for infiltration and permeability, considering clogging, of permeable pavement systems is developed and being tested.

- Soil-Water Characteristic Curve of a pervious concrete sample was successfully back-calculated based on rainfall infiltration model test.